トップレベル問題に挑戦 合格る一題(うかる一題)

マナビスinfo冬号版 数学

※ 秋号版 問題・解答はこちら

河合塾数学科講師 広瀬 和之(ひろせ かずゆき)
トップ層を中心に授業を担当.「基本」を重視し,「言葉」を正しく用いた指導には定評がある.全統医進模試の作成チーフを務め,著書は『合格(うか)る計算』など多数.マナビスでは「総合数学Ⅰ・A・Ⅱ・B(レベル5・6)文系」 などを担当している.

今回の出題分野は,「指数関数・対数関数」(数学Ⅱ)です.

その中で,いわゆる「常用対数」(10 を底とする対数)に関して出題します.
コンピュータ無き時代,大きな数を扱うために使われた先人たちの知恵に,どっぷりと浸ってみましょう.大切なのは,常用対数の値をよく見て,そこから如何に有益な情報を読み取るかです.


問題

 0 以上の整数 $n$ に対して,自然数 $2^n$ の桁数を $f(n)$,最高位(首位)を $g(n)$ とする.例えば,$2^{10}=1024$ だから $f(10)=4$,$g(10)=1$ である.
 以下の問に答えよ.ただし,$\log_{10}2=0.30103\ ,\ \log_{10}3=0.47712\ ,\ \log_{10}7=0.84510$ としてよいとする.

  1. $f(2018)=\boxed{アイウ}\ ,\ g(2018)=\boxed{エ}$ である.
  2. $k=0,1,2,\cdots,9$ のとき, \begin{align*} f(10k)=&\boxed{オ}k+\boxed{カ}\ ,\ f(10k+3)=\boxed{キ}k+\boxed{ク}\ ,\ f(10k+9)=\boxed{ケ}k+\boxed{コ},\\ g(10k)=&\boxed{サ}\ ,\ g(10k+3)=\boxed{シ}\ ,\ \boxed{ス}\ ,\ g(10k+9)=\boxed{セ}\ ,\ \boxed{ソ} \end{align*} である.ただし,$\boxed{シ}\lt \boxed{ス}$ ,$\boxed{セ}\lt \boxed{ソ}$ とする.
  3. $g(n)=4$ となる $n\ (0\leqq n\leqq2018)$ の個数は,$\boxed{タチツ}$ である.



<解答方法>,・・・の一つ一つには,0から9までの数字のいずれかが入ります.

対象学年 高1・2・3生/正解者の中から抽選で100名の方に図書カード2,000円分をプレゼント!/当選結果の発表はプレゼントの発送をもって 答えの入力はこちら

解答は1月上旬予定!

過去の問題にも挑戦!
back number

第1題 問題 解答
第2題 問題 解答
第3題 問題 解答
第4題 問題 解答
第5題 問題 解答
夏号 問題 解答
秋号 問題 問題